Assembly of Three WS₃Cu₂ Cluster Units by μ_3 -S Bridges: Synthesis of [PPh₄][{(C₅Me₅)WS₃Cu₂}₃S₂]

Jian-Ping Lang and Kazuyuki Tatsumi*

Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-01, Japan

Received July 18, 1997

Introduction

Construction of aggregated large clusters by linking preformed cluster units remains a challenging subject.¹ Simple sulfur compounds such as $S_{8,}^2 H_2S_3^3 HS^{-,4} Li_2S_5^5 Na_2S_6^6$ and $Na_2S_2^7$ have been used as convenient tools for such a purpose. An important feature of these reagents is that they may remove labile ligands such as Cl⁻, Br⁻, I⁻, CH₃CN, and CO from cluster units and assemble the remaining cluster cores by filling the voids with sulfur atoms. A notable example is the single-sulfurbridged double cubane [(Fe₄S₄Cl₃)₂S]⁴⁻, which was obtained from the reaction between [Fe₄S₄Cl₄]²⁻ and Li₂S in CH₃CN.^{5a} Two units of the related mixed-metal cubane [(MoFe₃S₃Cl₄)-(C₂O₄)]³⁻ were then successfully connected by treating the double cubane with [Et₄N]CN followed by addition of [Et₄N]SH, affording the doubly-bridged double-cubane cluster {[MoFe₃S₄-Cl₂(C₂O₄)](μ_2 -CN)(μ_2 -S)]}⁵⁻.^{4b}

Tetrathiometalates are known to serve as precursors of a wide variety of heterometallic sulfide clusters.⁸ Our recent synthesis of the half-sandwich trithio complexes $[(C_5Me_5)MS_3Li_2(THF)_2]_2$ $(M = Nb, Ta)^{9ab}$ and $[PPh_4][(C_5Me_5)MS_3]$ $(M = Mo, W)^{9c}$ expanded the scope of our study, and we examined their cluster forming reactions with appropriate late-transition metal com-

- (a) Dance, I.; Fisher, K. In *Progress in Inorganic Chemistry*; Karlin, K. D., Ed.; Wiley-Interscience: New York, 1994; Vol. 41, p 637. (b) Müller, A.; Krahn, E. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 1071.
- (2) (a) Hagen, K. S.; Watson, A. D.; Holm, R. H. J. Am. Chem. Soc. 1983, 105, 3905. (b) Pohl, S.; Saak, W. Z. Naturforsch. 1988, B43, 457.
- (3) (a) Bottomley, G.; Egharevba, G. O.; White, P. S. J. Am. Chem. Soc. 1985, 107, 4353. (b) Müller, A.; Schladerbeck, N.; Bögge, H. J. Chem. Soc., Chem. Commun. 1987, 35.
- (4) (a) Cotton, F. A.; Llusar, R.; Eagle, C. T. J. Am. Chem. Soc. 1989, 111, 4332. (b) Demadis, K. D.; Cocouvanis, D. Inorg. Chem. 1995, 34, 436.
- (5) (a) Challen, P. R.; Koo, S. M.; Dunham, W. R.; Coucouvanis, D. J. Am. Chem. Soc. 1990, 112, 2455. (b) Coucouvanis, D.; Challen, P. R.; Koo, S. M.; Davis, W. M.; Butler, W.; Dunham, W. R. Inorg. Chem. 1989, 28, 4181
- (6) Lockemeyer, J. R.; Rauchfuss, T. B.; Rheingold, A. L. J. Am. Chem. Soc. 1989, 111, 5733.
- (7) Strasdeit, H.; Krebs, B.; Henkel, G. Inorg. Chem. 1984, 23, 1816.
- (a) Christou, G.; Garner, C. D.; Mabbs, F. E.; King, T. J. J. Chem. Soc., Chem. Commun. 1978, 740. (b) Müller, A.; Diemann, E.; Jostes, R.; Bögge, H. Angew. Chem., Int. Ed. Engl. 1981, 20, 934. (c) Howard, K. E.; Rauchfuss, T. B.; Rheingold, A. L. J. Am. Chem. Soc. 1986, 108, 297. (d) Coucouvanis, D. Acc. Chem. Res. 1991, 24, 1. (e) Jeannin, Y.; Secheresse, F.; Bernes, S.; Robert, F. Inorg. Chim. Acta 1992, 198–200, 493. (f) Molybdenum Enzymes, Cofactors, and Model Systems; Stiefel, E. I., Coucouvanis, D., Newton, W. E., Eds.; ACS Symposium Series 535; American Chemical Society: Washington, DC, 1993. (g) Holm, R. H. Pure Appl. Chem. 1995, 67, 2117. (h) Ogo, S.; Suzuki, T.; Ozawa, Y.; Isobe, K. Inorg. Chem. 1996, 35, 6093.

plexes.¹⁰ For instance, [PPh₄][(C₅Me₅)MS₃] was found to react readily with CuNCS and CuBr in CH₃CN, resulting in isolation of [PPh₄]₂[{(C₅Me₅)WS₃}₂Cu₆(NCS)₆] and [PPh₄]₂[{C₅Me₅}-WS₃}₂Cu₆Br₆] (**1**), in which two incomplete cubane WS₃Cu₃ units were weakly connected by NCS and Br bridges, respectively.^{10c} The latter cluster **1** carries bromide bound to each copper atom, and we investigated its reaction with Li₂S₂. This communication reports an unprecedented nonanuclear cluster [PPh₄][{(C₅Me₅)WS₃Cu₂}₃S₂] (**2**) obtained therefrom, which is an aggregate of three WS₃Cu₂ clusters interconnected by two μ_3 -S atoms.

Results and Discussion

A yellow powder of dry Li₂S₂^{9b} was added to an acetonitrile solution of $[PPh_4]_2[\{C_5Me_5\}WS_3\}_2Cu_6Br_6]$ (1) (1:2 molar ratio). The dark red solution immediately darkened, and a black powder gradually precipitated. After the mixture was stirred overnight at ambient temperature, a black powder was filtered off along with LiBr and unreacted Li₂S₂. According to the X-ray fluorescence microanalysis, the black powder does not contain tungsten, and we presume it to be a copper sulfide. The filtrate was concentrated to ca. 2 mL in vacuo, and diethyl ether was layered on the solution. Dark red prismatic crystals of $[PPh_4][{(C_5Me_5)WS_3Cu_2}_3S_2]$ ·3CH₃CN (2·3CH₃CN) were formed in 3 days in 64% yield. 2 is stable to oxygen and moisture and is soluble in CH₃CN and DMSO. The electronic spectrum of 2 in CH₃CN exhibits absorption band at 399 nm, while the IR spectrum displays W-S_{br} stretching vibrations at 447 (m) and 430 (s) cm⁻¹. The ¹H NMR spectrum of **2** has a single resonance of C₅Me₅ at 1.97 ppm, implying that the three C₅-Me₅ groups have the same chemical environment in $(CD_3)_{2-}$ SO.

The X-ray study of **2** showed that an asymmetric unit consists of one $[{(C_5Me_5)WS_3Cu_2}_3S_2]^-$ anion, one PPh₄⁺ cation, and three CH₃CN solvent molecules. The structure of the anion part of 2 is presented in Figure 1, and important bond lengths and angles are given in Table 1. The structure of $[{(C_5Me_5)} WS_3Cu_2)_3S_2]^-$ can be described as three chemically equivalent $[(C_5Me_5)WS_3Cu_2]^+$ clusters interconnected by two triply bridging S^{2-} ligands. Alternatively, the main frame of the structure may be viewed as a trigonal-face bicapped trigonal prism made of six coppers and two sulfurs, and each of three nonbonded Cu···Cu edges is bound to one $[(C_5Me_5)WS_3]^-$ anion. This core structure resembles that of [Et₄N]₄[(WSe₄Cu₂)₃Se₂], in which three $[WSe_4]^{2-}$ moieties bridge two Cu₃ triangles.¹¹ One Cu₃ (Cu(1), Cu(4), Cu(5)) triangular plane is nearly parallel (1.4°) to the opposite Cu₃ (Cu(2), Cu(3), Cu(6)) plane. The Cu···Cu distances within the trigonal planes range from 2.91 to 3.06 Å, while those connecting the planes are somewhat longer, being 3.11-3.18 Å. The two sulfur atoms, S(10) and

(11) Christuk, C. C.; Ansari, M. A.; Ibers, J. A. Angew. Chem., Int. Ed. Engl. 1992, 31, 1477.

^{(9) (}a) Tatsumi, K.; Inoue, Y.; Nakamura, A.; Cramer, R. E.; VanDoorne, W.; Gilje, J. W. J. Am. Chem. Soc. 1989, 111, 782. (b) Tatsumi, K.; Inoue, Y.; Kawaguchi, H.; Kohasaka, M.; Nakamura, A.; Cramer, R. E.; VanDoorne, W.; Taogoshi, G. J.; Richmann, P. N.Organometallics 1993, 12, 352. (c) Kawaguchi, H.; Tatsumi, K. J. Am. Chem. Soc. 1995, 117, 3885.

^{(10) (}a) Tatsumi, K.; Kawaguchi, H.; Inoue, Y.; Nakamura, A.; Cramer, R. E.; Golen, J. A. Angew. Chem., Int. Ed. Engl. 1993, 32, 763. (b) Kawaguchi, H.; Tatsumi, K. Organometallics 1997, 16, 307. (c) Lang, J.-P.; Kawagichi, H.; Ohnishi, S.; Tatsumi, K. J. Chem. Soc., Chem. Commun. 1997, 405.

Figure 1. Structure and labeling scheme of the cluster anion of 2, where only one set of disordered C_5Me_5 groups is shown. The thermal ellipsoids are drawn at the 50% probability level.

Table 1. Selected Bond Lengths (Å) and Angles (deg) for $[PPh_4][\{(C_5Me_5)WS_3Cu_2\}_3S_2] \cdot 3CH_3CN$ (**2**•3CH₃CN)

W(1) - Cu(1)	2.675(3)	W(1)-Cu(2)	2.683(3)
W(2)-Cu(3)	2.665(2)	W(2)-Cu(4)	2.682(3)
W(3) - Cu(5)	2.681(3)	W(3) - Cu(6)	2.680(2)
W(1) - S(1)	2.228(5)	W(1) - S(2)	2.236(6)
W(1) - S(3)	2.288(5)	W(2) - S(4)	2.234(5)
W(2) - S(5)	2.233(5)	W(2) - S(6)	2.296(5)
W(3) - S(7)	2.226(5)	W(3) - S(8)	2.236(5)
W(3) - S(9)	2.292(5)	Cu(1) - S(1)	2.221(6)
Cu(1) - S(3)	2.247(5)	Cu(1) - S(10)	2.197(5)
Cu(2) - S(2)	2.218(6)	Cu(2) - S(3)	2.249(5)
Cu(2) - S(11)	2.204(5)	Cu(3) - S(4)	2.209(6)
Cu(3) - S(6)	2.244(5)	Cu(3) - Cu(11)	2.192(5)
Cu(4) - S(5)	2.221(6)	Cu(4) - S(6)	2.257(6)
Cu(4) - S(10)	2.211(6)	Cu(5) - S(7)	2.223(6)
Cu(5) - S(9)	2.221(5)	Cu(5) - S(10)	2.203(6)
Cu(6) - S(8)	2.237(5)	Cu(6) - S(9)	2.237(5)
Cu(6) - S(11)	2.206(5)		
S(1) - W(1) - S(2)	104.6(2)	S(1) = W(1) = S(3)	105.8(2)
S(2) - W(1) - S(3)	104.7(2)	S(4) - W(2) - S(5)	105.5(2)
S(4) - W(2) - S(6)	105.1(2)	S(5) - W(2) - S(6)	105.4(2)
S(7) - W(3) - S(8)	104.8(2)	S(7) - W(3) - S(9)	104.8(2)
S(8) - W(3) - S(9)	105.6(2)	Cu(1) - W(1) - Cu(2)	71.38(7)
Cu(3) - W(2) - Cu(4)	71.18(7)	Cu(5) - W(3) - Cu(6)	72.83(7)
S(1) - Cu(1) - S(3)	107.5(2)	S(1) - Cu(1) - S(10)	124.2(2)
S(3) - Cu(1) - S(10)	127.6(2)	S(2) - Cu(2) - S(3)	106.7(2)
S(2)-Cu(2)-S(11)	125.0(2)	S(3)-Cu(2)-S(11)	126.9(2)
S(4) - Cu(3) - S(6)	107.7(2)	S(4) - Cu(3) - S(11)	122.7(2)
S(6) - Cu(3) - S(11)	128.3(2)	S(5) - Cu(4) - S(6)	107.1(2)
S(5) - Cu(4) - S(10)	125.9(2)	S(6) - Cu(4) - S(10)	125.6(2)
S(7) - Cu(5) - S(9)	107.4(2)	S(7) - Cu(5) - S(10)	128.3(2)
S(9) - Cu(5) - S(10)	123.6(2)	S(8) - Cu(6) - S(9)	107.4(2)
S(8) - Cu(6) - S(11)	128.2(2)	S(9) - Cu(6) - S(11)	123.1(2)
W(1) - S(1) - Cu(1)	73.9(2)	W(1) - S(2) - Cu(2)	74.1(2)
W(1) - S(3) - Cu(1)	72.3(2)	W(1) - S(3) - Cu(2)	72.5(2)
W(2) - S(4) - Cu(3)	73.7(2)	W(2) - S(5) - Cu(4)	74.1(2)
W(2) - S(6) - Cu(3)	71.9(2)	W(2) - S(6) - Cu(4)	72.2(2)
W(3) - S(7) - Cu(5)	74.1(2)	W(3) - S(8) - Cu(6)	73.6(2)
W(3) - S(9) - Cu(4)	72.9(2)	W(3) - S(9) - Cu(6)	72.5(2)
Cu(1) - S(3) - Cu(2)	88.1(2)	Cu(3) - S(6) - Cu(4)	87.5(2)
Cu(5) - S(9) - Cu(6)	91.1(2)	Cu(1) - S(10) - Cu(4)	82.4(2)
Cu(1) - S(10) - Cu(5)	87.4(2)	Cu(4) - S(10) - Cu(5)	86.2(2)
Cu(2) - S(11) - Cu(3)	84.2(2)	Cu(2) - S(11) - Cu(6)	87.7(2)
Cu(3) - S(11) - Cu(6)	84.1(2)		

S(11), sit 1.37 Å above (or below) the corresponding triangular Cu₃ planes. The dihedral angles between the S₃ planes of three $(C_5Me_5)WS_3$ fragments are all close to 60°, implying that the

 $[(WS_3Cu_2)_3S_2]$ core possesses an approximate 3-fold symmetry, and the pseudo C_3 axis runs through S(10) and S(11).

The sulfur atoms are classified into three groups, which are μ_2 -S (S(1), S(2), S(4), S(5), S(7), S(8)) bridging W and Cu, μ_3 -S (S(3), S(6), S(9)) bridging W and two Cu atoms, and μ_3 -S' (S(10) and S(11)) bridging three Cu atoms. Each copper atom adopts a trigonal planar coordination geometry with three sulfurs of different types. The three S-Cu-S angles sum up to 359°. The Cu-S distances of 2.192(5)-2.257(6) Å are normal.^{10c} The Cu– (u_3-S') –Cu angles of 82.4(2)–87.7(2)° are comparable to those of $Cu-(\mu_3-S)-Cu$ angles (87.5(2)-91.1(2)°), but larger than those of Cu–(μ_2 -S)–W (73.6(2)– 74.1(2)°) and Cu $-(\mu_3-S)-W$ (71.9(2)-72.9(2)°). The W-S bond lengths of 2.226(5)-2.296(5) Å are similar to those observed in 1 (2.280(2)-2.284(2) Å) and [PPh₄]₂[(C₅Me₅)WS₃- $Cu_3(NCS)_3]_2$ (2.267(3)-2.290(3) Å).^{10c} The short W-Cu distances of 2.665(2)-2.683(3) Å suggest a dative interaction between d¹⁰ Cu^I and d⁰ W^{VI}. It should be mentioned here that triangular clusters doubly capped by two sulfur atoms from the two sides are known. Examples are [PPh4][Et4N]3[(WS4- $Fe_{3}S_{2}$, ^{12a} [{(C₅H₅)Ni}₃S₂], ^{12b} and [M'₃S₂(dppe)₃][PF₆]₂ (M' = Pd, Pt),¹³ which are featured by Fe₃S₂, Ni₃S₂, and M'₃S₂ trigonal bipyramid structures.

In the structure of 1, the two $[(C_5Me_5)WS_3Cu_3Br_3]^-$ are weakly bound, so they may well split in solution and/or in the presence of Li₂S₂. In fact, the ESI-MS study of 1 in CH₃CN showed a set of peaks associated with the isotopic cluster of $[(C_5Me_5)WS_3Cu_3Br_3]^-$ and the parent ion signal was not observed. Thus it is likely that the dissociated species $[(C_5Me_5)WS_3Cu_3Br_3]^-$ degraded into $[(C_5Me_5)WS_3Cu_2]^+$ under the reaction condition, which was then self-assembled into 2 by replacing two Br atoms with 2/3S. The liberated CuBr appears to react further with Li₂S₂, affording a black copper sulfide. In this solution, Li_2S_2 acted as a monosulfide (S²⁻) transfer reagent, which is not very surprising because lithium sulfides may easily disproportionate in polar solvent.9c Our successful isolation of 2 shows that use of Li₂S₂ or related sulfur compounds can be a convenient method to aggregate preformed clusters.

Experimental Section

General Information. All manipulations were carried out under argon using standard Schlenk-line techniques. All solvents were predried over activated molecular sieves and refluxed over the appropriate drying agents under argon and collected by distillation. A ¹H NMR spectrum for **2** was recorded on a Varian UNITYplus-500 spectrometer, and chemical shifts were quoted in δ (ppm) relative to (CD₃)₂SO. IR spectrum was recorded on a Perkin-Elmer 2000FT–IR spectrophotometer using KBr pellets. UV–vis spectrum for **2** was measured on a JASCO V-560 spectrophotometer. C, H, and S analyses were performed on a LECO-CHNS microanalyzer.

Preparation of [PPh4][{(C₅Me₅)WS₃Cu₂}₃S₂] (2). To an acetonitrile solution (25 mL) of **1** (0.11 g, 0.046 mmol) was added a yellow powder of dry $\text{Li}_{2}\text{S}_{2}^{9b}$ (0.018 g, 0.23 mmol). The dark red solution immediately darkened, and a black powder gradually precipitated. After the mixture was allowed to stir overnight at room temperature, a black powder was removed along with LiBr and unreacted $\text{Li}_{2}\text{S}_{2}$ by centrifugation. The filtrate was concentrated to *ca*. 2 mL *in vacuo*, and diethyl ether (4 mL) was layered on the solution. Dark red

^{(12) (}a) Müller, A.; Hellmann, W.; Bögge, H.; Jostes, R.; Römer, M.; Schimanski, U. Angew. Chem., Int. Ed. Engl. 1982, 21, 860. (b) Vahrenkamp, H.; Uchtman, V. A.; Dahl, L. F. J. Am. Chem. Soc. 1968, 90, 3272.

⁽¹³⁾ Matsumoto, K.; Saiga, S.; Tanaka, S.; Ooi, S. J. Chem. Soc., Dalton Trans. 1991, 1265.

Table 2. Crystallographic Data for [PPh₄][{(C₅Me₅)WS₃Cu₂}₃S₂]·3CH₃CN (**2**·3CH₃CN)

n [I I	$1 [1114][((C_5)(C_5)(V_5)(C_2)(C_2)(C_1)(C_1)(C_2)(C_2)(C_2)(C_2)(C_2)(C_2)(C_2)(C_2$		
	formula	$C_{60}H_{74}Cu_6N_3PS_{11}W_3$	
	fw	2153.72	
	crystal system	monoclinic	
	space group	<i>P</i> 2 ₁ /c (No. 14)	
	a, Å	15.477(4)	
	b, Å	21.652(5)	
	<i>c</i> , Å	21.623(2)	
	α, deg		
	β , deg	91.35(1)	
	γ , deg		
	V, Å ³	7244(2)	
	Ζ	4	
	$D_{\rm calcd}, {\rm g} \cdot {\rm cm}^{-3}$	1.975	
	μ , cm ⁻¹	68.49	
	λ (Mo K α), Å	0.710 69	
	R^a	0.049	
	$R_{ m w}{}^b$	0.055	
	GOF^{c}	1.63	

^{*a*} $R = \sum ||F_o| - |F_c|| \sum |F_o|$. ^{*b*} $R_w = \{\sum W(|F_o| - |F_c|)^2 \sum W|F_o|^2\}^{1/2}$. ^{*c*} GOF = $\{\sum W(|F_o| - |F_c|)^2 / (M - N)\}^{1/2}$, where *M* is the number of reflections and *N* is the number of parameters.

prismatic crystals of **2**·3CH₃CN were formed in 3 days and were collected by filtration, washed with CH₃CN/Et₂O (1:5 v/v), and dried *in vacuo*. Yield: 0.04 g (64%). Anal. Calcd for C₅₄H₆₅Cu₆PS₁₁W₃: C, 31.94; H, 3.23; S, 17.23. Found: C, 32.12; H, 3.19; S, 17.48. ¹H NMR (DMSO-*d*₆, 500 MHz, 25 °C): δ 7.72–7.97 (PPh₄⁺, m, 20H); 1.97 (C₅Me₅, s, 45H). IR (KBr pellets): 1482 (m), 1435 (m), 1187 (w), 1164 (m), 1107 (s), 1024 (m), 995 (m), 804 (m), 756 (m), 722(s), 690 (s), 527 (s), 447 (m), 430(s) cm⁻¹. UV–vis (CH₃CN) λ_{max}/nm (ϵ_{max}/M^{-1} cm⁻¹): 399 (21 300).

X-ray Structure Determination. X-ray-quality crystals of **2**·3CH₃-CN were obtained directly from the preparation as described above. Diffraction data were collected on a Rigaku AFC7R diffractometer at ambient temperature by using graphite-monochromated Mo K α radiation (0.710 79 Å). A dark red single crystal of **2**·3CH₃CN with dimensions 0.40 × 0.25 × 0.30 mm was sealed in a capillary under argon. Cell constants and an orientation matrix for data collection were obtained from least-squares refinements using the setting angles of 25 carefully centered reflections in the range 22.6 < 2 θ < 24.7° for **2**•3CH₃CN. The intensities of three representative reflections monitored every 150 reflections showed no sign of significant decay. An empirical absorption correction using the ψ scan technique was applied, which resulted in transmission factors ranging from 0.91 to 1.00 for **2**•3CH₃-CN. Of the 10 197 reflections that were collected, 9753 were unique. The data were corrected for Lorentz and polarization effects.

The structure of 2·3CH₃CN was solved by direct methods¹⁴ and expanded using Fourier techniques.¹⁵ The three C₅Me₅ groups were found to be disordered over two positions and they were refined as rigid groups with occupancy factors of 0.60:0.40 for C(1)-C(10) and 0.50:0.50 for C(11)-C(30). W, Cu, P, S, and C from the [PPh₄]⁺ cation were refined anisotropically, while the isotropic temperature factors were applied to the C and N atoms from three CH₃CN solvent molecules and disordered C atoms of C5Me5 groups. All the hydrogen atoms except those on the disordered C5Me5 groups were placed at calculated positions without refinement. The final R and R_w factors were 0.049 and 0.055, respectively, for 5563 unique reflections with $I > 3.00\sigma(I)$. The maximum and minimum residual peaks on the final difference Fourier map are 1.37 and -1.27 e/Å³, respectively. Neutral atom scattering factors were taken from the Cromer and Waber.¹⁶ Crystallographic calculations were carried out with a teXsan crystallographic software package from Molecular Structure Corp. (1985, 1992). Crystallographic data for 2•3CH₃CN are summarized in Table 2.

Acknowledgment. J.-P.L. thanks the Japan Society for the Promotion of Science (JSPS) for a postdoctoral fellowship.

Supporting Information Available: An X-ray crystallographic file, in CIF format, for the structure determination of $[PPh_4][\{(C_5Me_5)WS_3-Cu_2\}_3S_2]\cdot 3CH_3CN$ is available on the Internet only. Ordering information is given on any current masthead page.

IC970894X

- (15) Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M. *DIRDIF94: The DIRDIF-94 Program System.* Technical Report of the Crystallography Laboratory, University of Nijmegen: The Netherlands, 1992.
- (16) Cromer, D. T.; Waber, J. T. *International Tables for X-ray Crystallography*; Kynoch Press: Birmingham, England, 1974; Vol. 4.

⁽¹⁴⁾ Sheldrick, G. M. In *Crystallographic Computing 3*; Sheldrick, G. M., Kruger, C., Goddard, R., Eds.; Oxford University Press: Oxford, England, 1985; p 175.